#### CALIBRATION PROCEDURE FOR FEC200 Last updated 05/08/07

### EQUIPMENT NEEDED

Digital Voltmeter with certified accuracy of  $\pm 0.05\%$  or better Digital Storage Oscilloscope with certified timing accuracy of 1% or better Four terminal resistors with certified accuracy of  $\pm 0.1\%$  or better. 0.1 Ohm and 1.0 Ohm Two terminal resistors with certified accuracy of  $\pm 0.1\%$  or better. 1K Ohm 20W \* Two terminal resistors with certified accuracy of  $\pm 0.1\%$  or better. 1M Ohm \* Two terminal resistors with certified accuracy of  $\pm 2\%$ , 1G Ohm

This calibration was performed on (date)

| Ву                                                         |               |  |
|------------------------------------------------------------|---------------|--|
| Tester serial number   Asset number   Next calibration due |               |  |
| DVM Model Number                                           | Serial number |  |
| Oscilloscope Model Number                                  | Serial number |  |
| 0.1 Ohm Resistor Number                                    | Serial number |  |
| 1 Ohm Resistor Number                                      | Serial number |  |
| 1K Ohm Resistor Number                                     | Serial number |  |
| 1M Ohm Resistor Number                                     | Serial number |  |
| 1G Ohm Resistor Number                                     | Serial number |  |

Note 1: When connecting resistors to the tester, connect each end to of the resistor to both force and sense terminals of the tester with very short wires. Packaged resistors furnished by FEC may be plugged directly into the test station.

Note 2: This procedure assumes familiarity with programming and operating the tester.

There are several variables in the file CUSTOM.TXT for setting offset and scale factor corrections for various scales. The file should be edited before starting this procedure so that all of these variables are set to zero. If you wish to improve the accuracy of the tester further, you can re-edit these variables as required and then repeat this procedure using the new settings.

## STEP 2

Remove the front panel that covers the plug-in board rack in order to get access to the jack labeled "COM", and the two BNC connectors labeled SYNC1 and SYNC2. Do not use the jack labeled "COM" on the top chassis as this is not sufficiently accurate.

# STEP 3

Perform the following eight tests one at a time with the 1M Ohm resistor plugged into the manual test station. Connect the "low" probe of your DVM to the COM jack and the high probe to the "Cathode" end of the test resistor. The test time will be 5 Seconds long so that you will have time to read the DVM. Turn on WATCH for the test station you are using. In the chart below, record both the DVM reading and the reading displayed on the computer screen.

| TEST 1 IR 1V<br>TEST 1 IR 10V<br>TEST 1 IR 100V<br>TEST 1 IR 1000V  | 1UA<br>10UA<br>100UA<br>1MA | T5000 F2<br>T5000 F2<br>T5000 F2<br>T5000 F2 |                  |                                                                                                              |
|---------------------------------------------------------------------|-----------------------------|----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------|
| Expect       DVM         V1       V2         1.000V                 |                             | Tolerance<br>±0.01<br>±0.05<br>±0.5<br>±5    | Screen<br>UA<br> | Tolerance<br>UA=V2 ±0.0035<br>UA=V2 ±0.035<br>UA=V2 ±0.35<br>UA=V2 ±3.5<br>or equivalent mA                  |
| TEST 1 VZ 1UA<br>TEST 1 VZ 10UA<br>TEST 1 VZ 100UA<br>TEST 1 VZ 1MA | 1V<br>10V<br>100V<br>100V   | T5000<br>T5000<br>T5000<br>T5000             |                  |                                                                                                              |
| Expect       DVM         V1       V2         1.000V                 |                             | Tolerance<br>±0.006<br>±0.06<br>±0.6<br>±6   | Screen<br>V<br>  | Tolerance<br>$V=V2 \pm 0.0035$<br>$V=V2 \pm 0.035$<br>$V=V2 \pm 0.35$<br>$V=V2 \pm 3.5$<br>or ognivalant KV/ |

Perform the following five tests one at a time with the 1K Ohm resistor plugged into the manual test station. Connect the "low" probe of your DVM to the "Anode" end and the high probe to the "Cathode" end of the test resistor. The test time will be 5 Seconds long so that you will have time to read the DVM. Turn on WATCH for the test station you are using. In the chart below, record both the DVM reading and the reading displayed on the computer screen.

| TEST 1 IR 1V<br>TEST 1 IR 10 | 7 1MA<br>V 10MA | T5000 F2<br>T5000 F2 |              |                               |
|------------------------------|-----------------|----------------------|--------------|-------------------------------|
| Expect D                     | VM<br>/2        | Tolerance            | Screen<br>MA | Tolerance                     |
| 1.000V<br>10.00V             |                 | ±0.006<br>±0.06      |              | MA=V2 ±0.0035<br>MA=V2 ±0.035 |
| TEST 1 VZ 1                  | MA 1V           | T5000                |              |                               |
| TEST 1 VZ 10                 | DMA 10V         | T5000                |              |                               |
| TEST 1 VZ 10                 | 00MA 100V       | T5000                |              |                               |
| Expect D<br>V1 V             | VM<br>/2        | Tolerance            | Screen<br>V  | Tolerance                     |
| 1.000V                       |                 | ±0.005               |              | V=V2 ±0.0035                  |
| 10.00V                       |                 | ±0.05                |              | V=V2 ±0.035                   |
| 100.0V                       |                 | ±0.5                 |              | V=V2 ±0.35                    |
|                              |                 |                      |              |                               |

## STEP 5

Perform the following two tests one at a time with the 1G Ohm resistor plugged into the manual test station. Connect the "low" probe of your DVM to the "COM" jack and the high probe to the "Cathode" end of the test resistor. The test time will be 5 Seconds long so that you will have time to read the DVM. Turn on WATCH for the test station you are using. In the chart below, record both the DVM reading and the reading displayed on the computer screen.

| TEST 1 I<br>TEST 1 I | R 1V<br>R 10V | 1NA<br>10NA | T5000<br>T5000  |              |                           |
|----------------------|---------------|-------------|-----------------|--------------|---------------------------|
| Expect<br>V1         | DVM<br>V2     |             | Tolerance       | Screen<br>NA | Tolerance                 |
| 1.000V<br>10.00V     |               |             | ±0.005<br>±0.05 |              | NA=V2 ±0.25<br>NA=V2 ±0.8 |

Perform the following two tests one at a time with open clips. The force and sense terminals should be connected together with very short jumpers. The DVM is not needed for this test. Turn on WATCH for the test station you are using. In the chart below, record the reading displayed on the computer screen.

| 100V   | 1NA                           | T5000                                  |
|--------|-------------------------------|----------------------------------------|
| 1000V  | 10NA                          | T5000                                  |
|        |                               |                                        |
| Screen |                               | Tolerance                              |
| NA     |                               |                                        |
|        |                               |                                        |
|        | _                             | +1.5NA                                 |
|        | _                             | +10.5NA                                |
|        | 100V<br>1000V<br>Screen<br>NA | 100V 1NA<br>1000V 10NA<br>Screen<br>NA |

# STEP 7

Perform the following four tests one at a time using the 1 Ohm resistor. The DVM is not needed for this test. Turn on WATCH for the test station you are using. In the chart below, record the reading displayed on the computer screen.

| TEST 1 VF<br>TEST 1 VF<br>TEST 1 VF<br>TEST 1 VF | 50MA<br>400MA<br>500MA<br>4A | 1V<br>1V<br>1V<br>4V |                                   |
|--------------------------------------------------|------------------------------|----------------------|-----------------------------------|
| Expect                                           | Screen                       |                      | Tolerance                         |
| 50MV<br>400MV<br>500MV<br>4V                     |                              |                      | ±0.5MV<br>±3MV<br>±3.8MV<br>±30MV |

### STEP 8

Perform the following two tests one at a time using the 0.1 Ohm resistor. The DVM is not needed for this test. Turn on WATCH for the test station you are using. In the chart below, record the reading displayed on the computer screen.

| TEST 1 VF<br>TEST 1 VF | 5A<br>20A | 1V<br>2V |                 |
|------------------------|-----------|----------|-----------------|
| Expect                 | Screen    |          | Tolerance       |
| 500MV<br>2V            |           | _        | ±3.8MV<br>±15MV |

Perform the following tests one at a time using the 1K Ohm resistor. The DVM is not needed for this test. Turn on WATCH for the test station you are using. In the chart below, record the reading displayed on the computer screen.

| TEST 1 ZZT 1MA 10V<br>TEST 1 ZZT 100UA 10V |        | 1KR<br>1KR   | Т50<br>Т50 |
|--------------------------------------------|--------|--------------|------------|
| Expect                                     | Screen | Tolerance    |            |
| 1KR<br>1KR                                 |        | ±10R<br>±10R |            |

Note: If these readings are not in tolerance, you may turn the trim pot on the B530 circuit board to correct the readings. Set it for the best compromise between the two readings.

#### STEP 10

Set up the following test using any convenient 1A rated rectifier. Connect the oscilloscope as follows. Using a direct (BNC to BNC) cable, connect the BNC labeled SYNC2 to the external trigger input of the scope. Set the scope for external trigger, falling. The sync signal will be a TTL level, low going pulse. Connect the scope probe to the cathode of the rectifier being tested.

TEST 1 DVF 10MA 1A <100MV T10 D100

Make sure that the current station cursor is on the test station you are using (use <F4> to set it). Enter these two lines.

SYNC1 2 SYNC2 1

The scope will trigger (adjust trigger level if necessary) at the exact time that the FEC200 samples the "hot" VF reading at 10mA (IM). The scope will display the VF, which is a negative voltage. You should be able to easily see where the VF changes from a relatively high voltage at the 1A level to the lower voltage at 10mA. The waveform is not a neat step as observed in this manner however you are only interested in the time difference between the end of the 1A pulse and the time that the scope triggers. That time should be 100 $\mu$ S  $\pm$  5 $\mu$ S

EXPECTED

TOLERANCE

100µS \_\_\_\_\_ ±5µS